Table of Contents
.......The Elegant Universe
THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
Chapter 1 - Tied Up with String
The Forces, or, Where's the Photon?
Things only become more complicated when we consider the forces of nature. The world around us is replete with means of exerting influence: balls can be hit with bats, bungee enthusiasts can throw themselves earthward from high platforms, magnets can keep superfast trains suspended just above metallic tracks, Geiger counters can tick in response to radioactive material, nuclear bombs can explode. We can influence objects by vigorously pushing, pulling, or shaking them; by hurling or firing other objects into them; by stretching, twisting, or crushing them; or by freezing, heating, or burning them. During the past hundred years physicists have accumulated mounting evidence that all of these interactions between various objects and materials, as well as any of the millions upon millions of others encountered daily, can be reduced to combinations of four fundamental forces. One of these is the gravitational force. The other three are the electromagnetic force, the weak force, and the strong force.

Gravity is the most familiar of the forces, being responsible for keeping us in orbit around the sun as well as for keeping our feet firmly planted on earth. The mass of an object measures how much gravitational force it can exert as well as feel. The electromagnetic force is the next most familiar of the four. It is the force driving all of the conveniences of modern life—lights, computers, TVs, telephones—and underlies the awesome might of lightning storms and the gentle touch of a human hand. Microscopically, the electric charge of a particle plays the same role for the electromagnetic force as mass does for gravity: it determines how strongly the particle can exert as well as respond electromagnetically.

The strong and the weak forces are less familiar because their strength rapidly diminishes over all but subatomic distance scales; they are the nuclear forces. This is why these two forces were discovered only much more recently. The strong force is responsible for keeping quarks "glued" together inside of protons and neutrons and keeping protons and neutrons tightly crammed together inside atomic nuclei. The weak force is best known as the force responsible for the radioactive decay of substances such as uranium and cobalt.

During the past century, physicists have found two features common to all these forces. First, as we will discuss in Chapter 5, at a microscopic level all the forces have an associated particle that you can think of as being the smallest packet or bundle of the force. If you fire a laser beam—an "electromagnetic ray gun"—you are firing a stream of photons, the smallest bundles of the electromagnetic force. Similarly, the smallest constituents of weak and strong force fields are particles called weak gauge bosons and gluons. (The name gluon is particularly descriptive: You can think of gluons as the microscopic ingredient in the strong glue holding atomic nuclei together.) By 1984 experimenters had definitively established the existence and the detailed properties of these three kinds of force particles, recorded in Table 1.2. Physicists believe that the gravitational force also has an associated particle—the graviton—but its existence has yet to be confirmed experimentally. (Epsilon=One: The "graviton" will never be found; at least not before the tooth-fairy is found co-habitating with Santa Claus . . . in the South Pacific. If attraction-at-a-distance was a truth, it would require six gravitons—reach, grasp, and pull—for each body in a "two-body" situation. Engineering 101 teaches that a force must act directly on its object. Also, gravitons, as particles, are assumed to have mass, by definition; thus, particles should be quantitative without the necessity of spending a billion dollars searching; as Caltech has with a single project—ocassionally resurrected from failure—with no success. Kinda like the search for a Higgs Boson. Hint: To find the God particle (Higgs Boson), start with a "First Postulate"; then, forget the quantitative and seek "dark" matter with Philogic.)

Table 1.2 The four forces of nature, together with their associated force particles and their masses in multiples of the proton mass. (The weak force particles come in varieties with the two possible masses listed. Theoretical studies show that the graviton should be massless.)
The second common feature of the forces is that just as mass determines how gravity affects a particle, and electric charge determines how the electromagnetic force affects it, particles are endowed with certain amounts of "strong charge" and "weak charge" that determine how they are affected by the strong and weak forces. (These properties are detailed in the table in the endnotes to this chapter. 1 But as with particle masses, beyond the fact that experimental physicists have carefully measured these properties, no one has any explanation of why our universe is composed of these particular particles, with these particular masses and force charges. (Epsilon=One: The Universe's "particular masses and force charges" are a consequence of the varied oscillations of the Fundamental Postulate of Reality (FPR) as symbolically represented by the algebraic geometry of the Pulsoid of Pulsoid Theory (PT).

Notwithstanding their common features, an examination of the fundamental forces themselves serves only to compound the questions. Why, for instance, are there four fundamental forces? Why not five or three or perhaps only one? Why do the forces have such different properties? Why are the strong and weak forces confined to operate on microscopic scales while gravity and the electromagnetic force have an unlimited range of influence? And why is there such an enormous spread in the intrinsic strength of these forces?

To appreciate this last question, imagine holding an electron in your left hand and another electron in your right hand and bringing these two identical electrically charged particles close together. Their mutual gravitational attraction will favor their getting closer while their electromagnetic repulsion will try to drive them apart. Which is stronger? There is no contest: The electromagnetic repulsion is about a million billion billion billion billion (10^42) times stronger! If your right bicep represents the strength of the gravitational force, then your left bicep would have to extend beyond the edge of the known universe to represent the strength of the electromagnetic force. The only reason the electromagnetic force does not completely overwhelm gravity in the world around us is that most things are composed of an equal amount of positive and negative electric charges whose forces cancel each other out. On the other hand, since gravity is always attractive, there are no analogous cancellations—more stuff means greater gravitational force. But fundamentally speaking, gravity is an extremely feeble force. (This fact accounts for the difficulty in experimentally confirming the existence of the graviton. Searching for the smallest bundle of the feeblest force is quite a challenge.) Experiments also have shown that the strong force is about one hundred times as strong as the electromagnetic force and about one hundred thousand times as strong as the weak force. But where is the rationale—the raison d'être—for our universe having these features?

This is not a question born of idle philosophizing about why certain details happen to be one way instead of another; the universe would be a vastly different place if the properties of the matter and force particles were even moderately changed. For example, the existence of the stable nuclei forming the hundred or so elements of the periodic table hinges delicately on the ratio between the strengths of the strong and electromagnetic forces. (Epsilon=One: Protons are nuclear resonances of oscillations/forces that emerge from the infinitesimal while electrons are orbital resonances of oscillations/forces that emerge from the infinite as symbolically demonstrated be the Emergent Ellipsoid (EEd). The initial emergence occurs with the separation of a dimensionless point within a dimensionless sphere. Amazingly, the diameter of a proton and its electron are identical . . . until a traumatic ejection from their dual ellispsoidal envelopes/"fields.") The protons crammed together in atomic nuclei all repel one another electromagnetically; the strong force acting among their constituent quarks, thankfully, overcomes this repulsion and tethers the protons tightly together. But a rather small change in the relative strengths of these two forces would easily disrupt the balance between them, and would cause most atomic nuclei to disintegrate. Furthermore, were the mass of the electron a few times greater than it is, electrons and protons would tend to combine to form neutrons, gobbling up the nuclei of hydrogen (the simplest element in the cosmos, with a nucleus containing a single proton) and, again, disrupting the production of more complex elements. Stars rely upon fusion between stable nuclei and would not form with such alterations to fundamental physics. The strength of the gravitational force also plays a formative role. The crushing density of matter in a star's central core powers its nuclear furnace and underlies the resulting blaze of starlight. If the strength of the gravitational force were increased, the stellar clump would bind more strongly, causing a significant increase in the rate of nuclear reactions. But just as a brilliant flare exhausts its fuel much faster than a slow-burning candle, an increase in the nuclear reaction rate would cause stars like the sun to burn out far more quickly, having a devastating effect on the formation of life as we know it. On the other hand, were the strength of the gravitational force significantly decreased, matter would not clump together at all, thereby preventing the formation of stars and galaxies.

We could go on, but the idea is clear: the universe is the way it is because the matter and the force particles have the properties they do. But is there a scientific explanation for why they have these properties? (Epsilon=One: The "why" is found in the geometry of the Pulsoid as symbolically represented by the Emergent Ellipsoid (EEd).)
Table of Contents
.......The Elegant Universe