THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 4 - Microscopic Weirdness
Feynman's Perspective
Richard Feynman was one of the greatest theoretical physicists since Einstein. He fully accepted the probabilistic core of quantum mechanics, but in the years following World War II he offered a powerful new way of thinking about the theory. From the standpoint of numerical predictions, Feynman's perspective agrees exactly with all that went before. But its formulation is quite different. Let's describe it in the context of the electron two-slit experiment.
The troubling thing about Figure 4.8 is that we envision each electron as passing through either the left slit or the right slit and therefore we expect the union of Figures 4.4 and 4.5, as in Figure 4.6, to represent the resulting data accurately. An electron that passes through the right slit should not care that there also happens to be a left slit, and vice versa. But somehow it does. The interference pattern generated requires an overlapping and an intermingling between something sensitive to both slits, even if we fire electrons one by one. Schrodinger, de Broglie, and Born explained this phenomenon by associating a probability wave to each electron. Like the water waves in Figure 4.8, the electron's probability wave "sees" both slits and is subject to the same kind of interference from intermingling. Places where the probability wave is augmented by the intermingling, like the places of significant jostling in Figure 4.7, are locations where the electron is likely to be found; places where the probability wave is diminished by the intermingling, like the places of minimal or no jostling in Figure 4.7, are locations where the electron is unlikely or never to be found. Electrons hit the phosphorescent screen one by one, distributed according to this probability profile, and thereby build up an interference pattern like that in Figure 4.8.
Feynman took a different tack. He challenged the basic classical assumption that each electron either goes through the left slit or the right slit. You might think this to be such a basic property of how things work that challenging it is fatuous. After all, can't you look in the region between the slits and the phosphorescent screen to determine through which slit each electron passes? You can. But now you have changed the experiment. To see the electron you must do something to it—for instance, you can shine light on it, that is, bounce photons off it. Now, on everyday scales photons act as negligible little probes that bounce off trees, paintings, and people with essentially no effect on the state of motion of these comparatively large material bodies. But electrons are little wisps of matter. Regardless of how gingerly you carry out your determination of the slit through which it passed, photons that bounce off the electron necessarily affect its subsequent motion. And this change in motion changes the results of our experiment. If you disturb the experiment just enough to determine the slit through which each electron passes, experiments show that the results change from that of Figure 4.8 and become like that of Figure 4.6! The quantum world ensures that once it has been established that each electron has gone through either the left slit or the right slit, the interference between the two slits disappears.
And so Feynman was justified in leveling his challenge since—although our experience in the world seems to require that each electron pass through one or the other of the slits—by the late 1920s physicists realized that any attempt to verify this seemingly basic quality of reality ruins the experiment.
Feynman proclaimed that each electron that makes it through to the phosphorescent screen actually goes through both slits. It sounds crazy, but hang on: Things get even more wild. Feynman argued that in traveling from the source to a given point on the phosphorescent screen each individual electron actually traverses every possible trajectory simultaneously; a few of the trajectories are illustrated in Figure 4.10. It goes in a nice orderly way through the left slit. It simultaneously also goes in a nice orderly way through the right slit. It heads toward the left slit, but suddenly changes course and heads through the right. It meanders back and forth, finally passing through the left slit. It goes on a long journey to the Andromeda galaxy before turning back and passing through the left slit on its way to the screen. And on and on it goes—the electron, according to Feynman, simultaneously "sniffs" out every possible path connecting its starting location with its final destination.

At this point your classical upbringing is balking: How can one electron simultaneously take different paths—and no less than an infinite number of them? This seems like a defensible objection, but quantum mechanics—the physics of our world—requires that you hold such pedestrian complaints in abeyance. The result of calculations using Feynman's approach agree with those of the wave function method, which agree with experiments. You must allow nature to dictate what is and what is not sensible. As Feynman once wrote, "[Quantum mechanics] describes nature as absurd from the point of view of common sense. And it fully agrees with experiment. So I hope you can accept nature as She is—absurd." 8
But no matter how absurd nature is when examined on microscopic scales, things must conspire so that we recover the familiar prosaic happenings of the world experienced on everyday scales. To this end, Feynman showed that if you examine the motion of large objects—like baseballs, airplanes, or planets, all large in comparison with subatomic particles—his rule for assigning numbers to each path ensures that (all paths but one cancel each other out when their contributions are combined. In effect, only one of the infinity of paths matters as far as the motion of the object is concerned. And this trajectory is precisely the one emerging from Newton's laws of motion. This is why in the everyday world it seems to us that objects—like a ball tossed in the air—follow a single, unique, and predictable trajectory from their origin to their destination. But for microscopic objects, Feynman's rule for assigning numbers to paths shows that many different paths can and often do contribute to an object's motion. In the double-slit experiment, for example, some of these paths pass through different slits, giving rise to the interference pattern observed. In the microscopic realm we therefore cannot assert that an electron passes through only one slit or the other. The interference pattern and Feynman's alternative formulation of quantum mechanics emphatically attest to the contrary.
Just as we may find that varying interpretations of a book or a film can be more or less helpful in aiding our understanding of different aspects of the work, the same is true of the different approaches to quantum mechanics. Although their predictions always agree completely, the wave function approach and Feynman's sum-over-paths approach give us different ways of thinking about what's going on. As we shall see later on, for some applications, one or the other approach can provide an invaluable explanatory framework.
The troubling thing about Figure 4.8 is that we envision each electron as passing through either the left slit or the right slit and therefore we expect the union of Figures 4.4 and 4.5, as in Figure 4.6, to represent the resulting data accurately. An electron that passes through the right slit should not care that there also happens to be a left slit, and vice versa. But somehow it does. The interference pattern generated requires an overlapping and an intermingling between something sensitive to both slits, even if we fire electrons one by one. Schrodinger, de Broglie, and Born explained this phenomenon by associating a probability wave to each electron. Like the water waves in Figure 4.8, the electron's probability wave "sees" both slits and is subject to the same kind of interference from intermingling. Places where the probability wave is augmented by the intermingling, like the places of significant jostling in Figure 4.7, are locations where the electron is likely to be found; places where the probability wave is diminished by the intermingling, like the places of minimal or no jostling in Figure 4.7, are locations where the electron is unlikely or never to be found. Electrons hit the phosphorescent screen one by one, distributed according to this probability profile, and thereby build up an interference pattern like that in Figure 4.8.
Feynman took a different tack. He challenged the basic classical assumption that each electron either goes through the left slit or the right slit. You might think this to be such a basic property of how things work that challenging it is fatuous. After all, can't you look in the region between the slits and the phosphorescent screen to determine through which slit each electron passes? You can. But now you have changed the experiment. To see the electron you must do something to it—for instance, you can shine light on it, that is, bounce photons off it. Now, on everyday scales photons act as negligible little probes that bounce off trees, paintings, and people with essentially no effect on the state of motion of these comparatively large material bodies. But electrons are little wisps of matter. Regardless of how gingerly you carry out your determination of the slit through which it passed, photons that bounce off the electron necessarily affect its subsequent motion. And this change in motion changes the results of our experiment. If you disturb the experiment just enough to determine the slit through which each electron passes, experiments show that the results change from that of Figure 4.8 and become like that of Figure 4.6! The quantum world ensures that once it has been established that each electron has gone through either the left slit or the right slit, the interference between the two slits disappears.
And so Feynman was justified in leveling his challenge since—although our experience in the world seems to require that each electron pass through one or the other of the slits—by the late 1920s physicists realized that any attempt to verify this seemingly basic quality of reality ruins the experiment.
Feynman proclaimed that each electron that makes it through to the phosphorescent screen actually goes through both slits. It sounds crazy, but hang on: Things get even more wild. Feynman argued that in traveling from the source to a given point on the phosphorescent screen each individual electron actually traverses every possible trajectory simultaneously; a few of the trajectories are illustrated in Figure 4.10. It goes in a nice orderly way through the left slit. It simultaneously also goes in a nice orderly way through the right slit. It heads toward the left slit, but suddenly changes course and heads through the right. It meanders back and forth, finally passing through the left slit. It goes on a long journey to the Andromeda galaxy before turning back and passing through the left slit on its way to the screen. And on and on it goes—the electron, according to Feynman, simultaneously "sniffs" out every possible path connecting its starting location with its final destination.

Figure 4.10 According to Feynman's formulation of quantum mechanics, particles must be viewed as travelling from one location to another along every possible path. Here, a few of the infinity of trajectories for a single electron travelling from the source to the phosphorescent screen are shown. Notice that this one electron actually goes through both slits.
Feynman showed that he could assign a number to each of these paths in such a way that their combined average yields exactly the same result for the probability calculated using the wave-function approach. And so from Feynman's perspective no probability wave needs to be associated with the electron. Instead, we have to imagine something equally if not more bizarre. The probability that the electron—always viewed as a particle through and through—arrives at any chosen point on the screen is built up from the combined effect of every possible way of getting there. This is known as Feynman's "sum-over-paths" approach to quantum mechanics. 7At this point your classical upbringing is balking: How can one electron simultaneously take different paths—and no less than an infinite number of them? This seems like a defensible objection, but quantum mechanics—the physics of our world—requires that you hold such pedestrian complaints in abeyance. The result of calculations using Feynman's approach agree with those of the wave function method, which agree with experiments. You must allow nature to dictate what is and what is not sensible. As Feynman once wrote, "[Quantum mechanics] describes nature as absurd from the point of view of common sense. And it fully agrees with experiment. So I hope you can accept nature as She is—absurd." 8
But no matter how absurd nature is when examined on microscopic scales, things must conspire so that we recover the familiar prosaic happenings of the world experienced on everyday scales. To this end, Feynman showed that if you examine the motion of large objects—like baseballs, airplanes, or planets, all large in comparison with subatomic particles—his rule for assigning numbers to each path ensures that (all paths but one cancel each other out when their contributions are combined. In effect, only one of the infinity of paths matters as far as the motion of the object is concerned. And this trajectory is precisely the one emerging from Newton's laws of motion. This is why in the everyday world it seems to us that objects—like a ball tossed in the air—follow a single, unique, and predictable trajectory from their origin to their destination. But for microscopic objects, Feynman's rule for assigning numbers to paths shows that many different paths can and often do contribute to an object's motion. In the double-slit experiment, for example, some of these paths pass through different slits, giving rise to the interference pattern observed. In the microscopic realm we therefore cannot assert that an electron passes through only one slit or the other. The interference pattern and Feynman's alternative formulation of quantum mechanics emphatically attest to the contrary.
Just as we may find that varying interpretations of a book or a film can be more or less helpful in aiding our understanding of different aspects of the work, the same is true of the different approaches to quantum mechanics. Although their predictions always agree completely, the wave function approach and Feynman's sum-over-paths approach give us different ways of thinking about what's going on. As we shall see later on, for some applications, one or the other approach can provide an invaluable explanatory framework.