THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 4 - Microscopic Weirdness
What Are the Lumps?
Planck had no justification for his pivotal introduction of lumpy energy. Beyond the fact that it worked, neither he nor anyone else could give a compelling reason for why it should be true. As the physicist George Gamow once said, it was as if nature allowed one to drink a whole pint of beer or no beer at all, but nothing in between. 5 In 1905, Einstein found an explanation and for this insight he was awarded the 1921 Nobel Prize in physics.
Einstein came up with his explanation by puzzling over something known as the photoelectric effect. The German physicist Heinrich Hertz in 1887 was the first to find that when electromagnetic radiation—light—shines on certain metals, they emit electrons. By itself this is not particularly remarkable. Metals have the property that some of their electrons are only loosely bound within atoms (which is why they are such good conductors of electricity). When light strikes the metallic surface it relinquishes its energy, much as it does when it strikes the surface of your skin, causing you to feel warmer. This transfered energy can agitate electrons in the metal, and some of the loosely bound ones can be knocked clear off the surface.
But the strange features of the photoelectric effect become apparent when one studies more detailed properties of the ejected electrons. At first sight you would think that as the intensity of the light—its brightness—is increased, the speed of the ejected electrons will also increase, since the impinging electromagnetic wave has more energy. But this does not happen. Rather, the number of ejected electrons increases, but their speed stays fixed. On the other hand, it has been experimentally observed that the speed of the ejected electrons does increase if the frequency of the impinging light is increased, and, equivalently, their speed decreases if the frequency of the light is decreased. (For electromagnetic waves in the visible part of the spectrum, an increase in frequency corresponds to a change in color from red to orange to yellow to green to blue to indigo and finally to violet. Frequencies higher than that of violet are not visible and correspond to ultraviolet and, subsequently, X rays; frequencies lower than that of red are also not visible, and correspond to infrared radiation.) Infact, as the frequency of the light used is decreased, there comes a point when the speed of the emitted electrons drops to zero and they stop being ejected from the surface, regardless of the possibly blinding intensity of the light source. For some unknown reason, the color of the impinging light beam—not its total energy—controls whether or not electrons are ejected, and if they are, the energy they have.
To understand how Einstein explained these puzzling facts, let's go back to the warehouse, which has now heated up to a balmy 80 degrees. Imagine that the landlord, who hates children, requires everyone under the age of fifteen to live in the sunken basement of the warehouse, which the adults can view from a huge wraparound balcony. Moreover, the only way any of the enormous number of basement-bound children can leave the warehouse is if they can pay the guard an 85-cent exit fee. (This landlord is such an ogre.) The adults, who at your urging have arranged the collective wealth by denomination as described above, can give money to the children only by throwing it down to them from the balcony. Let's see what happens.
The person carrying pennies begins by tossing a few down, but this is far too meagre a sum for any of the children to be able to afford the departure fee. And because there is an essentially "infinite" sea of children all ferociously fighting in a turbulent tumult for the falling money, even if the penny-entrusted adult throws enormous numbers down, no individual child will come anywhere near collecting the 85 he or she needs to pay the guard. The same is true for the adults carrying nickels, dimes, and quarters. Although each tosses down a staggeringly large total amount of money, any single child is lucky if he or she gets even one coin (most get nothing at all) and certainly no child collects the 85 cents necessary to leave. But then, when the adult carrying dollars starts throwing them down—even comparatively tiny sums, dollar by single dollar—those lucky children who catch a single bill are able to leave immediately. Notice, though, that even as this adult loosens up and throws down barrels of dollar bills, the number of children who are able to leave increases enormously, but each has exactly 15 cents left after paying the guard. This is true regardless of the total number of dollars tossed.
Here is what all this has to do with the photoelectric effect. Based on the experimental data reviewed above, Einstein suggested incorporating Planck's lumpy picture of wave energy into a new description of light. A light beam, according to Einstein, should actually be thought of as a stream of tiny packets—tiny particles of light—which were ultimately christened photons by the chemist Gilbert Lewis (an idea we made use of in our example of the light clock of Chapter 2). To get a sense of scale, according to this particle view of light, a typical one-hundred-watt bulb emits about a hundred billion billion (10^20) photons per second. Einstein used this new conception to suggest a microscopic mechanism underlying the photoelectric effect: An electron is knocked off a metallic surface, he proposed, if it gets hit by a sufficiently energetic photon. And what determines the energy of an individual photon? To explain the experimental data, Einstein followed Planck's lead and proposed that the energy of each photon is proportional to the frequency of the light wave (with the proportionality factor being Planck's constant).
Now, like the children's minimum departure fee, the electrons in a metal must be jostled by a photon posessing a certain minimum energy in order to be kicked off the surface. (As with the children fighting for money, it is extremely unlikely that any one electron gets hit by more than one photon—most don't get hit at all.) But if the impinging light beam's frequency is too low, its individual photons will lack the punch necessary to eject electrons. Just as no children can afford to leave regardless of the huge total number of coins the adults shower upon them, no electrons are jostled free regardless of the huge total energy embodied in the impinging light beam, if its frequency (and thus the energy of its individual photons) is too low.
But just as children are able to leave the warehouse as soon as the monetary denomination showered upon them gets large enough, electrons will be knocked off the surface as soon as the frequency of the light shone on them—its energy denomination—gets high enough. Moreover, just as the dollar-entrusted adult increases the total money thrown down by increasing the number of individual bills tossed, the total intensity of a light beam of a chosen frequency is increased by increasing the number of photons it contains. And just as more dollars result in more children being able to leave, more photons result in more electrons being hit and knocked clear off the surface. But notice that the leftover energy that each of these electrons has after ripping free of the surface depends solely on the energy of the photon that hits it—and this is determined by the frequency of the light beam, not its total intensity. Just as children leave the basement with 15 cents no matter how many dollar bills are thrown down, each electron leaves the surface with the same energy—and hence the same speed—regardless of the total intensity of the impinging light. More total money simply means more children can leave; more total energy in the light beam simply means more electrons are knocked free. If we want children to leave the basement with more money, we must increase the monetary denomination tossed down; if we want electrons to leave the surface with greater speed, we must increase the frequency of the impinging light beam—that is, we must increase the energy denomination of the photons we shine on the metallic surface.
This is precisely in accord with the experimental data. The frequency of the light (its color) determines the speed of the ejected electrons; the total intensity of the light determines the number of ejected electrons. And so Einstein showed that Planck's guess of lumpy energy actually reflects a fundamental feature of electromagnetic waves: They are composed of particles—photons—that are little bundles, or quanta, of light. The lumpiness of the energy embodied by such waves is due to their being composed of lumps.
Einstein's insight represented great progress. But, as we shall now see, the story is not as tidy as it might appear.
Einstein came up with his explanation by puzzling over something known as the photoelectric effect. The German physicist Heinrich Hertz in 1887 was the first to find that when electromagnetic radiation—light—shines on certain metals, they emit electrons. By itself this is not particularly remarkable. Metals have the property that some of their electrons are only loosely bound within atoms (which is why they are such good conductors of electricity). When light strikes the metallic surface it relinquishes its energy, much as it does when it strikes the surface of your skin, causing you to feel warmer. This transfered energy can agitate electrons in the metal, and some of the loosely bound ones can be knocked clear off the surface.
But the strange features of the photoelectric effect become apparent when one studies more detailed properties of the ejected electrons. At first sight you would think that as the intensity of the light—its brightness—is increased, the speed of the ejected electrons will also increase, since the impinging electromagnetic wave has more energy. But this does not happen. Rather, the number of ejected electrons increases, but their speed stays fixed. On the other hand, it has been experimentally observed that the speed of the ejected electrons does increase if the frequency of the impinging light is increased, and, equivalently, their speed decreases if the frequency of the light is decreased. (For electromagnetic waves in the visible part of the spectrum, an increase in frequency corresponds to a change in color from red to orange to yellow to green to blue to indigo and finally to violet. Frequencies higher than that of violet are not visible and correspond to ultraviolet and, subsequently, X rays; frequencies lower than that of red are also not visible, and correspond to infrared radiation.) Infact, as the frequency of the light used is decreased, there comes a point when the speed of the emitted electrons drops to zero and they stop being ejected from the surface, regardless of the possibly blinding intensity of the light source. For some unknown reason, the color of the impinging light beam—not its total energy—controls whether or not electrons are ejected, and if they are, the energy they have.
To understand how Einstein explained these puzzling facts, let's go back to the warehouse, which has now heated up to a balmy 80 degrees. Imagine that the landlord, who hates children, requires everyone under the age of fifteen to live in the sunken basement of the warehouse, which the adults can view from a huge wraparound balcony. Moreover, the only way any of the enormous number of basement-bound children can leave the warehouse is if they can pay the guard an 85-cent exit fee. (This landlord is such an ogre.) The adults, who at your urging have arranged the collective wealth by denomination as described above, can give money to the children only by throwing it down to them from the balcony. Let's see what happens.
The person carrying pennies begins by tossing a few down, but this is far too meagre a sum for any of the children to be able to afford the departure fee. And because there is an essentially "infinite" sea of children all ferociously fighting in a turbulent tumult for the falling money, even if the penny-entrusted adult throws enormous numbers down, no individual child will come anywhere near collecting the 85 he or she needs to pay the guard. The same is true for the adults carrying nickels, dimes, and quarters. Although each tosses down a staggeringly large total amount of money, any single child is lucky if he or she gets even one coin (most get nothing at all) and certainly no child collects the 85 cents necessary to leave. But then, when the adult carrying dollars starts throwing them down—even comparatively tiny sums, dollar by single dollar—those lucky children who catch a single bill are able to leave immediately. Notice, though, that even as this adult loosens up and throws down barrels of dollar bills, the number of children who are able to leave increases enormously, but each has exactly 15 cents left after paying the guard. This is true regardless of the total number of dollars tossed.
Here is what all this has to do with the photoelectric effect. Based on the experimental data reviewed above, Einstein suggested incorporating Planck's lumpy picture of wave energy into a new description of light. A light beam, according to Einstein, should actually be thought of as a stream of tiny packets—tiny particles of light—which were ultimately christened photons by the chemist Gilbert Lewis (an idea we made use of in our example of the light clock of Chapter 2). To get a sense of scale, according to this particle view of light, a typical one-hundred-watt bulb emits about a hundred billion billion (10^20) photons per second. Einstein used this new conception to suggest a microscopic mechanism underlying the photoelectric effect: An electron is knocked off a metallic surface, he proposed, if it gets hit by a sufficiently energetic photon. And what determines the energy of an individual photon? To explain the experimental data, Einstein followed Planck's lead and proposed that the energy of each photon is proportional to the frequency of the light wave (with the proportionality factor being Planck's constant).
Now, like the children's minimum departure fee, the electrons in a metal must be jostled by a photon posessing a certain minimum energy in order to be kicked off the surface. (As with the children fighting for money, it is extremely unlikely that any one electron gets hit by more than one photon—most don't get hit at all.) But if the impinging light beam's frequency is too low, its individual photons will lack the punch necessary to eject electrons. Just as no children can afford to leave regardless of the huge total number of coins the adults shower upon them, no electrons are jostled free regardless of the huge total energy embodied in the impinging light beam, if its frequency (and thus the energy of its individual photons) is too low.
But just as children are able to leave the warehouse as soon as the monetary denomination showered upon them gets large enough, electrons will be knocked off the surface as soon as the frequency of the light shone on them—its energy denomination—gets high enough. Moreover, just as the dollar-entrusted adult increases the total money thrown down by increasing the number of individual bills tossed, the total intensity of a light beam of a chosen frequency is increased by increasing the number of photons it contains. And just as more dollars result in more children being able to leave, more photons result in more electrons being hit and knocked clear off the surface. But notice that the leftover energy that each of these electrons has after ripping free of the surface depends solely on the energy of the photon that hits it—and this is determined by the frequency of the light beam, not its total intensity. Just as children leave the basement with 15 cents no matter how many dollar bills are thrown down, each electron leaves the surface with the same energy—and hence the same speed—regardless of the total intensity of the impinging light. More total money simply means more children can leave; more total energy in the light beam simply means more electrons are knocked free. If we want children to leave the basement with more money, we must increase the monetary denomination tossed down; if we want electrons to leave the surface with greater speed, we must increase the frequency of the impinging light beam—that is, we must increase the energy denomination of the photons we shine on the metallic surface.
This is precisely in accord with the experimental data. The frequency of the light (its color) determines the speed of the ejected electrons; the total intensity of the light determines the number of ejected electrons. And so Einstein showed that Planck's guess of lumpy energy actually reflects a fundamental feature of electromagnetic waves: They are composed of particles—photons—that are little bundles, or quanta, of light. The lumpiness of the energy embodied by such waves is due to their being composed of lumps.
Einstein's insight represented great progress. But, as we shall now see, the story is not as tidy as it might appear.