Announcement

Collapse
No announcement yet.

Making Lumps at the Turn of the Century

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Making Lumps at the Turn of the Century

    Table of Contents
    .......The Elegant Universe
    THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
    ```(annotated and with added bold highlights by Epsilon=One)
    Chapter 4 - Microscopic Weirdness
    Making Lumps at the Turn of the Century
    In 1900 Planck made an inspired guess that allowed a way out of this puzzle and would earn him the 1918 Nobel Prize in physics. 2 To get a feel for his resolution, imagine that you and a huge crowd of people—"infinite" in number—are crammed into a large, cold warehouse run by a miserly landlord. There is a fancy digital thermostat on the wall that controls the temperature but you are shocked when you discover the charges that the landlord levies for heat. If the thermostat is set to 50 degrees Fahrenheit everyone must give the landlord $50. If it is set to 55 degrees everyone must pay $55, and so on. You realize that since you are sharing the warehouse with an infinite number of companions, the landlord will earn an infinite amount of money if you turn on the heat at all.

    But on closer reading of the landlord's rules of payment you see a loophole. Because the landlord is a very busy man he does not want to give change, especially not to an infinite number of individual tenants. So he works on an honor system. Those who can pay exactly what they owe, do so. Otherwise, they pay only as much as they can without requiring change. And so, wanting to involve everyone but wanting to avoid the exorbitant charges for heat, you compel your comrades to organize the wealth of the group in the following manner: One person carries all of the pennies, one person carries all of the nickels, one carries all of the dimes, one carries all of the quarters, and so on through dollar bills, five-dollar bills, ten-dollar bills, twenties, fifties, hundreds, thousands, and ever larger (and unfamiliar) denominations. You brazenly set the thermostat to 80 degrees and await the landlord's arrival. When he does come, the person carrying pennies goes to pay first and turns over 8,000. The person carrying nickels then turns over 1,600 of them, the person carrying dimes turns over 800, the person with quarters turns over 320, the person with dollars gives the landlord 80, the person with five-dollar bills turns over 16, the person with ten-dollar bills gives him 8, the person with twenties gives him 4, and the person with fifties hands over one (since 2 fifty-dollar bills would exceed the necessary payment, thereby requiring change). But everyone else carries only a denomination—a minimal "lump" of money—that exceeds the required payment. Therefore they cannot pay the landlord and hence rather than getting the infinite amount of money he expected, the landlord leaves with the paltry sum of $690.

    Planck made use of a very similar strategy to reduce the ridiculous result of infinite energy in an oven to one that is finite. Here's how. Planck boldly guessed that the energy carried by an electromagnetic wave in the oven, like money, comes in lumps. The energy can be one times some fundamental "energy denomination," or two times it, or three times it, and so forth—but that's it. Just as you can't have one-third of a penny or two and a half quarters, Planck declared that when it comes to energy, no fractions are allowed. Now, our monetary denominations are determined by the United States Treasury. Seeking a more fundamental explanation, Planck suggested that the energy denomination of a wave—the minimal lump of energy that it can have—is determined by its frequency. Specifically, he posited that the minimum energy a wave can have is proportional to its frequency: larger frequency (shorter wavelength) implies larger minimum energy; smaller frequency (longer wavelength) implies smaller minimum energy. Roughly speaking, just as gentle ocean waves are long and luxurious while harsh ones are short and choppy, long-wavelength radiation is intrinsically less energetic than short-wavelength radiation.

    Here's the punch line: Planck's calculations showed that this lumpiness of the allowed energy in each wave cured the previous ridiculous result of infinite total energy. It's not hard to see why. When an oven is heated to some chosen temperature, the calculations based on nineteenth-century thermodynamics predicted the common energy that each and every wave would supposedly contribute to the total. But like those comrades who cannot contribute the common amount of money they each owe the landlord because the monetary denomination they carry is too large, if the minimum energy a particular wave can carry exceeds the energy it is supposed to contribute, it can't contribute and instead lies dormant. Since, according to Planck, the minimum energy a wave can carry is proportional to its frequency, as we examine waves in the oven of ever larger frequency (shorter wavelength), sooner or later the minimum energy they can carry is bigger than the expected energy contribution. Like the comrades in the warehouse entrusted with denominations larger than fifty-dollar bills, these waves with ever-larger frequencies cannot contribute the amount of energy demanded by nineteenth-century physics. And so, just as only a finite number of comrades are able to contribute to the total heat payment—leading to a finite amount of total money—only a finite number of waves are able to contribute to the oven's total energy—again leading to a finite amount of total energy. Be it energy or money, the lumpiness of the fundamental units—and the ever increasing size of these lumps as we go to higher frequencies or to larger monetary denominations—changes an infinite answer to one that is finite. 3

    By eliminating the manifest nonsense of an infinite result, Planck had taken an important step. But what really made people believe that his guess had validity is that the finite answer that his new approach gave for the energy in an oven agreed spectacularly with experimental measurements. Specifically, Planck found that by adjusting one parameter that entered into his new calculations, he could predict accurately the measured energy of an oven for any selected temperature. This one parameter is the proportionality factor between the frequency of a wave and the minimal lump of energy it can have. Planck found that this proportionality factor—now known as Planck's constant and denoted (pronounced "h-bar")—is about a billionth of a billionth of a billionth in everyday units. 4 The tiny value of Planck's constant means that the size of the energy lumps are typically very small. This is why, for example, it seems to us that we can cause the energy of a wave on a violin string—and hence the volume of sound it produces—to change continuously. In reality, though, the energy of the wave passes through discrete steps, a la Planck, but the size of the steps is so small that the discrete jumps from one volume to another appear to be smooth. According to Planck's assertion, the size of these jumps in energy grows as the frequency of the waves gets higher and higher (while wavelengths get shorter and shorter). This is the crucial ingredient that resolves the infinite-energy paradox.

    As we shall see, Planck's quantum hypothesis does far more than allow us to understand the energy content of an oven. It overturns much about the world that we hold to be self-evident. The smallness of confines most of these radical departures from life-as-usual to the microscopic realm, but if happened to be much larger than it is, the strange happenings at the H-Bar would actually be commonplace. As we shall see, their microscopic counterparts certainly are.
    Table of Contents
    .......The Elegant Universe
Working...
X