**Table of Contents**

*.......The Elegant Universe*

**THE ELEGANT UNIVERSE,****Brian Greene,**1999, 2003

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 8 - More Dimensions Than Meet the Eye**

Some Questions

This raises a number of questions. First, why does string theory require the particular number of nine space dimensions to avoid nonsensical probability values? This is probably the hardest question in string theory to answer without appealing to mathematical formalism. A straightforward string theory calculation reveals this answer, but no one has an intuitive, nontechnical explanation for the particular number that emerges. The physicist Ernest Rutherford once said, in essence, that if you can't explain a result in simple, nontechnical terms, then you don't really understand it. He wasn't saying that this means your result is wrong; rather, he was saying that it means you do not fully understand its origin, meaning, or implications. Perhaps this is true regarding the extradimensional character of string theory. (In fact, let's take this opportunity to brace—parenthetically—for a cehtral aspect of the second superstring revolution that we will discuss in Chapter 12. The calculation underlying the conclusion that there are ten spacetime dimensions—nine space and one time—turns out to be

Second, if the equations of string theory (or, more precisely, the approximate equations guiding our pre—Chapter 12 discussion) show that the universe has nine space dimensions and one time dimension, why is it that three space (and one time) dimensions are large and extended while all of the others are tiny and curled up? Why aren't they

Third, given the requirement of numerous extra dimensions, is it possible that some are additional

It gets even stranger when you think about a curled-up time dimension. For instance, if a tiny ant walks around an extra space dimension that is curled up like a circle, it will find itself returning to the same position over and over again as it traverses complete circuits. This holds little mystery as we are familiar with the ability to return, should we so choose, to the same location in space as often as we like. But, if a curled-up dimension is a time dimension, traversing it means returning, after a temporal lapse, to

*approximate.*In the mid-1990s, Witten, based on his own insights and previous work by Michael Duff from Texas A&M University and Chris Hull and Paul Townsend from Cambridge University, gave convincing evidence that the approximate calculation actually*misses*one space dimension: String theory, he argued to most string theorists' amazement, actually requires*ten*space dimensions and one time dimension, for a total of*eleven dimensions.*We will ignore this important result until Chapter 12, as it will have little direct bearing on the material we develop before then.)Second, if the equations of string theory (or, more precisely, the approximate equations guiding our pre—Chapter 12 discussion) show that the universe has nine space dimensions and one time dimension, why is it that three space (and one time) dimensions are large and extended while all of the others are tiny and curled up? Why aren't they

*all*extended, or all curled up, or some other possibility in between? At present no one knows the answer to this question. If string theory is right, we should eventually be able to extract the answer, but as yet our understanding of the theory is not refined enough to reach this goal. That's not to say that there haven't been valiant attempts to explain it. For instance, from a cosmological perspective, we can imagine that all of the dimensions start out being tightly curled up and then, in a big bang—like explosion, three spatial dimensions and one time dimension unfurl and expand to their present large extent while the other spatial dimensions remain small. Rough arguments have been put forward as to why only three space dimensions grow large, as we will discuss in Chapter 14, but it's fair to say that these explanations are only in the formative stages. In what follows, we will assume that all but three space dimensions are curled up, in accordance with what we see around us. A primary goal of modern research is to establish that this assumption emerges from the theory itself.Third, given the requirement of numerous extra dimensions, is it possible that some are additional

*time*dimensions, as opposed to additional space dimensions? If you think about this for a moment, you will see that it's a truly bizarre possibility. We all have a visceral understanding of what it means for the universe to have multiple space dimensions, since we live in a world in which we constantly deal with a plurality—three. But what would it mean to have multiple times? Would one align with time as we presently experience it psychologically while the other would somehow be "different?"It gets even stranger when you think about a curled-up time dimension. For instance, if a tiny ant walks around an extra space dimension that is curled up like a circle, it will find itself returning to the same position over and over again as it traverses complete circuits. This holds little mystery as we are familiar with the ability to return, should we so choose, to the same location in space as often as we like. But, if a curled-up dimension is a time dimension, traversing it means returning, after a temporal lapse, to

*a prior instant in time.*This, of course, is well beyond the realm of our experience. Time, as we know it, is a dimension we can traverse in only one direction with absolute inevitability, never being able to return to an instant after it has passed. Of course, it might be that curled-up time dimensions have different properties from the familiar, vast time dimension that we imagine reaching back to the creation of the universe and forward to the present moment. But, in contrast to extra spatial dimensions, new and previously unknown time dimensions would clearly require an even more monumental restructuring of our intuition. Some theorists have been exploring the possibility of incorporating extra time dimensions into string theory, but as yet the situation is inconclusive. In our discussion of string theory, we will stick to the more "conventional" approach in which all of the curled-up dimensions are space dimensions, but the intriguing possibility of new time dimensions could well play a role in future developments.