**Table of Contents**

*.......The Elegant Universe*

**THE ELEGANT UNIVERSE,****Brian Greene,**1999, 2003

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 10 - Tearing the Fabric of Space**

Two Interrelated Notions of Distance in String Theory

Distance is such a basic concept in our understanding of the world that it is easy to underestimate the depth of its subtlety. With the surprising effects that special and general relativity have had on our notions of space and time, and the new features arising from string theory, we are led to be a bit more careful even in our definition of distance. The most meaningful definitions in physics are those that are operational—that is, definitions that provide a means, at least in principle, for measuring whatever is being defined. After all,

How can we give an operational definition of the concept of distance? The answer to this question in the context of string theory is rather surprising. In 1988, the physicists Robert Brandenberger of Brown University and Cumrun Vafa of Harvard University pointed out that if the spatial shape of a dimension is circular, there are two different yet related operational definitions of distance in string theory. Each lays out a distinct experimental procedure for measuring distance and is based, roughly speaking, on the simple principle that if a probe travels at a fixed and known speed then we can measure a given distance by determining how long the probe takes to traverse it. The difference between the two procedures is the choice of probe used. The first definition uses strings that are

How do the results of each procedure differ? The answer found by Brandenberger and Vafa is as surprising as it is subtle. The rough idea underlying the result can be understood by appealing to the uncertainty principle. Unwound strings can move around freely and probe the full circumference of the circle, a length proportional to

If string theory describes our universe, why have we not encountered these two possible notions of distance in any of our day-to-day or scientific endeavors? Any time we talk about distance, we do so in a manner that conforms to our experience of there being one concept of distance without any hint of there being a second notion. Why have we missed the alternative possibility? The answer is that although there is a high degree of symmetry in our discussion, whenever

The discrepancy in difficulty between the two approaches is due to the very different masses of the probes used—high-winding-energy/low-vibration-energy, and vice versa—if the radius

Putting issues of practicality aside, in a universe governed by string theory one is free to measure distances using either of the two approaches. When astronomers measure the "size of the universe" they do so by examining photons that have traveled across the cosmos and have happened to enter their telescopes. No pun intended, photons are the

Now we can answer our earlier question about big humans in a little universe. When we measure the height of a human and find six feet, for instance, we necessarily use the light string modes. To compare their size to that of the universe, we must use the same measuring procedure and, as above, this yields 15 billion light-years for the size of the universe, a result that is much larger than six feet. Asking how such a person can fit into the "tiny" universe as measured by the heavy string modes is asking a meaningless question—it's comparing apples and oranges. Since we now have two concepts of distance—using light or heavy string probes—we must compare measurements made in the same manner.

**no matter how abstract a concept is, having an operational definition allows us to boil down its meaning to an experimental procedure for measuring its value.****(Epsilon=One: NO! This is a major misconception of theoretical physicists and why it is so difficult to unravel their increasing number of enigmas. To understand the locus of the Universe, the origin of "dark" matter, Cosmic entanglement, the natural origin of numbers,***Infinity*, the weirdness of spin, mass, "empty" space, gravity, et cetera—one must move beyond the quantitative to Philogic.)How can we give an operational definition of the concept of distance? The answer to this question in the context of string theory is rather surprising. In 1988, the physicists Robert Brandenberger of Brown University and Cumrun Vafa of Harvard University pointed out that if the spatial shape of a dimension is circular, there are two different yet related operational definitions of distance in string theory. Each lays out a distinct experimental procedure for measuring distance and is based, roughly speaking, on the simple principle that if a probe travels at a fixed and known speed then we can measure a given distance by determining how long the probe takes to traverse it. The difference between the two procedures is the choice of probe used. The first definition uses strings that are

*not*wound around a circular dimension, whereas the second definition uses strings that*are*wound. We see that the extended nature of the fundamental probe is responsible for there being two natural operational definitions of distance in string theory. In a point-particle theory, for which there is no notion of winding, there would be only one such definition.How do the results of each procedure differ? The answer found by Brandenberger and Vafa is as surprising as it is subtle. The rough idea underlying the result can be understood by appealing to the uncertainty principle. Unwound strings can move around freely and probe the full circumference of the circle, a length proportional to

*R.*By the uncertainty principle, their energies are proportional to 1/*R*(recall from Chapter 6 the inverse relation between the energy of a probe and the distances to which it is sensitive). On the other hand, we have seen that wound strings have minimum energy proportional to*R*; as probes of distances the uncertainty principle tells us that they are therefore sensitive to the reciprocal of this value, 1/*R*. The mathematical embodiment of this idea shows that if each is used to measure the radius of a circular dimension of space, unwound string probes will measure*R*while wound strings will measure 1/*R*, where, as before,**we are measuring distances in multiples of the Planck length.**The result of each experiment has an equal claim to being the radius of the circle—what we learn from string theory is that using different probes to measure distance can result in different answers. In fact, this property extends to all measurements of lengths and distances, not just to determining the size of a circular dimension. The results obtained by wound and unwound string probes will be inversely related to one another.*4*If string theory describes our universe, why have we not encountered these two possible notions of distance in any of our day-to-day or scientific endeavors? Any time we talk about distance, we do so in a manner that conforms to our experience of there being one concept of distance without any hint of there being a second notion. Why have we missed the alternative possibility? The answer is that although there is a high degree of symmetry in our discussion, whenever

*R*(and hence 1/*R*as well) differ significantly from the value 1 (meaning, again, 1 times the Planck length), then one of our operational definitions proves extremely difficult to carry out while the other proves extremely easy to carry out. In essence, we have always carried out the easy approach, completely unaware of there being another possibility.The discrepancy in difficulty between the two approaches is due to the very different masses of the probes used—high-winding-energy/low-vibration-energy, and vice versa—if the radius

*R*(and hence 1/*R*as well) differs significantly from**the Planck length (that is,**"High" energy here, for radii that are vastly different from the Planck length, corresponds to incredibly massive probes—billions and billions of times heavier than the proton, for instance—while "low" energy corresponds to probe masses at most a speck above zero. In such circumstances, there is a monumental difference in difficulty between the two approaches, since even producing the heavy-string configurations is*R*= 1).**an undertaking that, at present, is beyond our technological prowess.**In practice, then, only one of the two approaches is technologically feasible—the one involving the lighter of the two types of string configurations. This is the one used implicitly in all of our discussions involving distance encountered to this point. This is the one that informs and hence meshes with our intuition.Putting issues of practicality aside, in a universe governed by string theory one is free to measure distances using either of the two approaches. When astronomers measure the "size of the universe" they do so by examining photons that have traveled across the cosmos and have happened to enter their telescopes. No pun intended, photons are the

*light*string modes in this situation. The result obtained is the 10^61 times the Planck length quoted earlier. If the three familiar spatial dimensions are in fact circular and string theory is right, astronomers using vastly different (and currently nonexistent) equipment, in principle, should be able to measure the extent of the heavens with heavy wound-string modes and find a result that is the reciprocal of this huge distance. It is in this sense that**we can think of the universe as being either huge,**as we normally do,**or terribly minute.****(Epsilon=One: The size of the Universe depends upon the speed of the viewer from infinitesimal speed to infinite speed; however, it the Universe is always expanding within a locus that is congruent with the dual loci of**According to the light string modes, the universe is large and expanding; according to the heavy modes it is tiny and contracting. There is no contradiction here; instead, we have two distinct but equally sensible definitions of distance. We are far more familiar with the first definition due to technological limitations, but, nevertheless, each is an equally valid concept.*Infinity.*)Now we can answer our earlier question about big humans in a little universe. When we measure the height of a human and find six feet, for instance, we necessarily use the light string modes. To compare their size to that of the universe, we must use the same measuring procedure and, as above, this yields 15 billion light-years for the size of the universe, a result that is much larger than six feet. Asking how such a person can fit into the "tiny" universe as measured by the heavy string modes is asking a meaningless question—it's comparing apples and oranges. Since we now have two concepts of distance—using light or heavy string probes—we must compare measurements made in the same manner.