THE ELEGANT UNIVERSE, Brian Greene, 1999, 2003
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 15 - Prospects
What is the Fundamental Principle Underlying String Theory?
One overarching lesson we have learned during the past hundred years is that the known laws of physics are associated with principles of symmetry. Special relativity is based on the symmetry embodied in the principle of relativity—the symmetry between all constant-velocity vantage points. The gravitational force, as embodied in the general theory of relativity, is based on the equivalence principle—the extension of the principle of relativity to embrace all possible vantage points regardless of the complexity of their states of motion. And the strong, weak, and electromagnetic forces are based on the more abstract gauge symmetry principles.
Physicists, as we have discussed, tend to elevate symmetry principles to a place of prominence by putting them squarely on the pedestal of explanation. Gravity, in this view, exists in order that all possible observational vantage points are on completely equal footing—i.e., so that the equivalence principle holds. Similarly, the nongravitational forces exist in order that nature respect their associated gauge symmetries. Of course, this approach shifts the question of why a certain force exists to why nature respects its associated symmetry principle. But this certainly feels like progress, especially when the symmetry in question is one that seems eminently natural. For example, why should one observer's frame of reference be treated differently from another's? It seems far more natural for the laws of the universe to treat all observational vantage points equally; this is accomplished through the equivalence principle and the introduction of gravity into the structure of the cosmos. Although it requires some mathematical background to appreciate fully, as we indicated in Chapter 5, there is a similar rationale behind the gauge symmetries underlying the three nongravitational forces.
String theory takes us down another notch on the scale of explanatory depth because all of these symmetry principles, as well as another—supersymmetry—emerge from its structure. In fact, had history followed a different course—and had physicists come upon string theory some hundred years earlier—we can imagine that these symmetry principles would have all been discovered by studying its properties. But bear in mind that whereas the equivalence principle gives us some understanding of why gravity exists, and the gauge symmetries give us some sense of why the nongravitational forces exist, in the context of string theory these symmetries are consequences; although their importance is in no way diminished, they are part of the end product of a much larger theoretical structure.
This discussion brings the following question into sharp relief: Is string theory itself an inevitable consequence of some broader principle—possibly but not necessarily a symmetry principle—in much the same way that the equivalence principle inexorably leads to general relativity or that gauge symmetries lead to the nongravitational forces? As of this writing, no one has any insight into the answer to this question. To appreciate its importance, we need only imagine Einstein trying to formulate general relativity without having had the happy thought he experienced in the Bern patent office in 1907 that led him to the principle of equivalence. It would not have been impossible to formulate general relativity without first having this key insight, but it certainly would have been extremely difficult. The equivalence principle provides a succinct, systematic, and powerful organizational framework for analyzing the gravitational force. The description of general relativity we gave in Chapter 3, for example, relied centrally on the equivalence principle, and its role in the full mathematical formalism of the theory is even more crucial.
Currently, string theorists are in a position analogous to an Einstein bereft of the equivalence principle. Since Veneziano's insightful guess in 1968, the theory has been pieced together, discovery by discovery, revolution by revolution. But a central organizing principle that embraces these discoveries and all other features of the theory within one overarching and systematic framework—a framework that makes the existence of each individual ingredient absolutely inevitable—is still missing. The discovery of this principle would mark a pivotal moment in the development of string theory, as it would likely expose the theory's inner workings with unforeseen clarity. There is, of course, no guarantee that such a fundamental principle exists, but the evolution of physics during the last hundred years encourages string theorists to have high hopes that it does. As we look to the next stage in the development of string theory, finding its "principle of inevitability"—that underlying idea from which the whole theory necessarily springs forth—is of the highest priority. 2
Physicists, as we have discussed, tend to elevate symmetry principles to a place of prominence by putting them squarely on the pedestal of explanation. Gravity, in this view, exists in order that all possible observational vantage points are on completely equal footing—i.e., so that the equivalence principle holds. Similarly, the nongravitational forces exist in order that nature respect their associated gauge symmetries. Of course, this approach shifts the question of why a certain force exists to why nature respects its associated symmetry principle. But this certainly feels like progress, especially when the symmetry in question is one that seems eminently natural. For example, why should one observer's frame of reference be treated differently from another's? It seems far more natural for the laws of the universe to treat all observational vantage points equally; this is accomplished through the equivalence principle and the introduction of gravity into the structure of the cosmos. Although it requires some mathematical background to appreciate fully, as we indicated in Chapter 5, there is a similar rationale behind the gauge symmetries underlying the three nongravitational forces.
String theory takes us down another notch on the scale of explanatory depth because all of these symmetry principles, as well as another—supersymmetry—emerge from its structure. In fact, had history followed a different course—and had physicists come upon string theory some hundred years earlier—we can imagine that these symmetry principles would have all been discovered by studying its properties. But bear in mind that whereas the equivalence principle gives us some understanding of why gravity exists, and the gauge symmetries give us some sense of why the nongravitational forces exist, in the context of string theory these symmetries are consequences; although their importance is in no way diminished, they are part of the end product of a much larger theoretical structure.
This discussion brings the following question into sharp relief: Is string theory itself an inevitable consequence of some broader principle—possibly but not necessarily a symmetry principle—in much the same way that the equivalence principle inexorably leads to general relativity or that gauge symmetries lead to the nongravitational forces? As of this writing, no one has any insight into the answer to this question. To appreciate its importance, we need only imagine Einstein trying to formulate general relativity without having had the happy thought he experienced in the Bern patent office in 1907 that led him to the principle of equivalence. It would not have been impossible to formulate general relativity without first having this key insight, but it certainly would have been extremely difficult. The equivalence principle provides a succinct, systematic, and powerful organizational framework for analyzing the gravitational force. The description of general relativity we gave in Chapter 3, for example, relied centrally on the equivalence principle, and its role in the full mathematical formalism of the theory is even more crucial.
Currently, string theorists are in a position analogous to an Einstein bereft of the equivalence principle. Since Veneziano's insightful guess in 1968, the theory has been pieced together, discovery by discovery, revolution by revolution. But a central organizing principle that embraces these discoveries and all other features of the theory within one overarching and systematic framework—a framework that makes the existence of each individual ingredient absolutely inevitable—is still missing. The discovery of this principle would mark a pivotal moment in the development of string theory, as it would likely expose the theory's inner workings with unforeseen clarity. There is, of course, no guarantee that such a fundamental principle exists, but the evolution of physics during the last hundred years encourages string theorists to have high hopes that it does. As we look to the next stage in the development of string theory, finding its "principle of inevitability"—that underlying idea from which the whole theory necessarily springs forth—is of the highest priority. 2