**THE FABRIC of the COSMOS,****Brian Greene,**2004

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 10 - Deconstructing the Bang**

The Missing 70 Percent

If you cast your mind back to 1917 and Einstein's introduction of a cosmological constant, you have enough information to suggest how it might be that the universe is accelerating. Ordinary matter and energy give rise to ordinary attractive gravity, which slows spatial expansion. But as the universe expands and things get increasingly spread out, this cosmic gravitational pull, while still acting to slow the expansion, gets weaker. And this sets us up for the new and unexpected twist. If the universe should have a cosmological constant — and if its magnitude should have just the right, small value — up until about 7 billion years ATB its gravitational repulsion would have been overwhelmed by the usual gravitational attraction of ordinary matter, yielding a net slowing of expansion, in keeping with the data. But then, as ordinary matter spread out and its gravitational pull diminished, the repulsive push of the cosmological constant (whose strength does not change as matter spreads out) would have gradually gained the upper hand, and

In the late 1990s, such reasoning and an in-depth analysis of the data led both the Perlmutter group and the Schmidt group to suggest that Einstein had not been wrong some eight decades earlier when he introduced a cosmological constant into the gravitational equations. The universe, they suggested, does have a cosmological constant.

The recession speed of a supernova depends on the difference between the gravitational pull of ordinary matter and the gravitational push of the "dark energy" supplied by the cosmological constant. Taking the amount of matter, both visible and dark, to be about 30 percent of the critical density, the supernova researchers concluded that the accelerated expansion they had observed required an outward push of a cosmological constant whose dark energy contributes about 70 percent of the critical density.

But there is a second, equally important reason why 70 percent is a remarkable number. A cosmological constant that contributes 70 percent

of the critical density would, together with the 30 percent coming from ordinary matter and dark matter, bring the total mass/energy of the universe right up to the full 100 percent predicted by inflationary cosmology! Thus, the outward push demonstrated by the supernova data can be explained by just the right amount of dark energy to account for the unseen 70 percent of the universe that inflationary cosmologists had been scratching their heads over. The supernova measurements and inflationary cosmology are wonderfully complementary. They confirm each other. Each provides a corroborating second opinion for the other.

Combining the observational results of supernovae with the theoretical insights of inflation, we thus arrive at the following sketch of cosmic

evolution, summarized in Figure 10.6. Early on, the energy of the universe was carried by the inflaton field, which was perched away from its

minimum energy state. Because of its negative pressure, the inflaton field drove an enormous burst of inflationary expansion. Then, some 10^-35 seconds later, as the inflaton field slid down its potential energy bowl, the burst of expansion drew to a close and the inflaton released its pent-up energy to the production of ordinary matter and radiation. For many billions of years, these familiar constituents of the universe exerted an ordinary attractive gravitational pull that slowed the spatial expansion. But as the universe grew and thinned out, the gravitational pull diminished. About 7 billion years ago, ordinary gravitational attraction became weak enough for the gravitational repulsion of the universe's cosmological constant to become dominant, and since then the rate of spatial expansion has been continually increasing.

About 100 billion years from now, all but the closest of galaxies will be dragged away by the swelling space at faster-than-light speed and so would be impossible for us to see, regardless of the power of telescopes used. If these ideas are right, then in the far future the universe will be a vast, empty, and lonely place.

*the era of decelerated spatial expansion would have given way to a new era of accelerated expansion.*In the late 1990s, such reasoning and an in-depth analysis of the data led both the Perlmutter group and the Schmidt group to suggest that Einstein had not been wrong some eight decades earlier when he introduced a cosmological constant into the gravitational equations. The universe, they suggested, does have a cosmological constant.

**Its magnitude is not what Einstein proposed, since he was chasing a static universe in which gravitational attraction and repulsion matched precisely, and these researchers found that for billions of years repulsion has dominated. But that detail notwithstanding, should the discovery of these groups continue to hold up under the close scrutiny and follow-up studies 'now under way, Einstein will have once again seen through to a fundamental feature of the universe, one that this time took more than eighty years to be confirmed experimentally.***23*The recession speed of a supernova depends on the difference between the gravitational pull of ordinary matter and the gravitational push of the "dark energy" supplied by the cosmological constant. Taking the amount of matter, both visible and dark, to be about 30 percent of the critical density, the supernova researchers concluded that the accelerated expansion they had observed required an outward push of a cosmological constant whose dark energy contributes about 70 percent of the critical density.

*This is a remarkable number.*If it's correct, then not only does ordinary matter — protons, neutrons, electrons — constitute a paltry 5 percent of the mass/energy of the universe, and not only does some currently unidentified form of dark matter constitute at least*five times*that amount, but also the*majority*of the mass/energy in the universe is contributed by a totally different and rather mysterious form of dark energy that is spread throughout space. If these ideas are right, they dramatically extend the Copernican revolution: not only are we not the center of the universe, but the stuff of which we're made is like flotsam on the cosmic ocean. If protons, neutrons, and electrons had been left out of the grand design, the total mass/energy of the universe would hardly have been diminished.But there is a second, equally important reason why 70 percent is a remarkable number. A cosmological constant that contributes 70 percent

of the critical density would, together with the 30 percent coming from ordinary matter and dark matter, bring the total mass/energy of the universe right up to the full 100 percent predicted by inflationary cosmology! Thus, the outward push demonstrated by the supernova data can be explained by just the right amount of dark energy to account for the unseen 70 percent of the universe that inflationary cosmologists had been scratching their heads over. The supernova measurements and inflationary cosmology are wonderfully complementary. They confirm each other. Each provides a corroborating second opinion for the other.

*24***Figure 10.6**A time line of cosmic evolution.

**(a)**Inflationary burst.

**(b)**Standard Big Bang evolution.

**(c)**Era of accelerated expansion.

Combining the observational results of supernovae with the theoretical insights of inflation, we thus arrive at the following sketch of cosmic

evolution, summarized in Figure 10.6. Early on, the energy of the universe was carried by the inflaton field, which was perched away from its

minimum energy state. Because of its negative pressure, the inflaton field drove an enormous burst of inflationary expansion. Then, some 10^-35 seconds later, as the inflaton field slid down its potential energy bowl, the burst of expansion drew to a close and the inflaton released its pent-up energy to the production of ordinary matter and radiation. For many billions of years, these familiar constituents of the universe exerted an ordinary attractive gravitational pull that slowed the spatial expansion. But as the universe grew and thinned out, the gravitational pull diminished. About 7 billion years ago, ordinary gravitational attraction became weak enough for the gravitational repulsion of the universe's cosmological constant to become dominant, and since then the rate of spatial expansion has been continually increasing.

About 100 billion years from now, all but the closest of galaxies will be dragged away by the swelling space at faster-than-light speed and so would be impossible for us to see, regardless of the power of telescopes used. If these ideas are right, then in the far future the universe will be a vast, empty, and lonely place.