**THE FABRIC of the COSMOS,****Brian Greene,**2004

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 12 - The World on a String**

**String Physics and Extra Dimensions**

The beauty of general relativity is that the physics of gravity is controlled by the geometry of space. With the extra spatial dimensions proposed by string theory, you'd naturally guess that the power of geometry to determine physics would substantially increase. And it does. Let's first see this by taking up a question that I've so far skirted. Why does string theory require ten spacetime dimensions? This is a tough question to answer nonmathematically, but let me explain enough to illustrate how it comes down to an interplay of geometry and physics.

Imagine a string that's constrained to vibrate only on the two-dimensional surface of a flat tabletop. The string will he able to execute a variety of vibrational patterns, but only those involving motion in the left/right and back/forth directions of the table's surface. If the string is then released to vibrate in the third dimension, motion in the up/down dimension that leaves the table's surface, additional vibrational patterns become accessible. Now, although it is hard to picture in more than three dimensions, this conclusion — more dimensions means more vibrational patterns — is general. If a string can vibrate in a fourth spatial dimension, it can execute more vibrational patterns than it could in only three; if a string can vibrate in a fifth spatial dimension, it can execute more vibrational patterns than it could in only four; and so on. This is an important realization, because there is an equation in string theory that demands that the number of independent vibrational patterns meet a very precise constraint. If the constraint is violated, the mathematics of string theory falls apart and its equations are rendered meaningless. In a universe with three space dimensions, the number of vibrational patterns is too small and the constraint is not met; with four space dimensions, the number of vibrational patterns is still too small; with five, six, seven, or eight dimensions it is still too small; but with nine space dimensions, the constraint on the number of vibrational patterns is satisfied perfectly. And that's how string theory determines the number of space dimensions.*

While this illustrates well the interplay of geometry and physics, their association within string theory goes further and, in fact, provides a way to address a critical problem encountered earlier. Recall that, in trying to make detailed contact between string vibrational patterns and the known particle species, physicists ran into trouble. They found that there were far too many massless string vibrational patterns and, moreover, the detailed properties of the vibrational patterns did not match those of the known matter and force particles. But what I didn't mention earlier, because we hadn't yet discussed the idea of extra dimensions; is that although those calculations took account of the

Strings are so small that even when the extra six dimensions are crumpled up into a Calabi-Yau shape, the strings still vibrate into those directions. For two reasons, that's extremely important. First, it ensures that the strings always vibrate in all nine space dimensions, and hence the constraint on the number of vibrational patterns continues to be satisfied, even when the extra dimensions are tightly curled up. Second, just as the vibrational patterns of air streams blown through a tuba are affected by the twists and turns of the instrument, the vibrational patterns of strings are influenced by the twists and turns in the geometry of the extra six dimensions. If you were to change the shape of a tuba by making a passageway narrower or by making a chamber longer, the air's vibrational patterns and hence the sound of the instrument would change. Similarly, if the shape and size of the extra dimensions were modified, the precise properties of each possible vibrational pattern of a string would also be significantly affected. And since a string's vibrational pattern determines its mass and charge, this means that the extra dimensions play a pivotal role in deter mining particle properties.

This is a key realization.

We saw one example of a Calabi-Yau shape in Figure 12.9, but there are at least hundreds of thousands of other possibilities. The question, then, is which Calabi-Yau shape, if any, constitutes the extra-dimensional part of the spacetime fabric.

Is this a fatal flaw of string theory? Possibly. But I don't think so. As we will discuss more fully in the next chapter, the exact equations of string theory have eluded theorists for many years and so much work has used

Nevertheless, we can still ask whether

Although we are far from having investigated every possibility, examples of Calabi-Yau shapes have been found that give rise to string vibrational patterns in rough agreement with Tables 12.1 and 12.2. For instance, in the mid-1980s Philip Candelas, Gary Horowitz, Andrew Strominger, and Edward Witten (the team of physicists who realized the relevance of Calabi-Yau shapes for string theory) discovered that each hole — the term is used in a precisely defined mathematical sense — contained within a Calabi-Yau shape gives rise to a

This is an extremely encouraging result; by no means was it ensured. In merging general relativity and quantum mechanics, string theory might have achieved one goal only to find it impossible to come anywhere near the equally important goal of explaining the properties of the known matter and force particles. Researchers take heart in the theory's having blazed past that disappointing possibility. Going further and calculating the precise masses of the particles is significantly more challenging. As we discussed, the particles in Tables 12.1 and 12.2 have masses that deviate from the lowest-energy string vibrations — zero times the Planck mass — by less than one part in a million billion. Calculating such infinitesimal deviations requires a level of precision way beyond what we can muster with our current understanding of string theory's equations.

As a matter of fact, I suspect, as do many other string theorists, that the tiny masses in Tables 12.1 and 12.2 arise in string theory much as they do in the standard model. Recall from Chapter 9 that in the standard model, a Higgs field takes on a nonzero value throughout all space, and the mass of a particle depends on how much drag force it experiences as it wades through the Higgs ocean. A similar scenario likely plays out in string theory. If a huge collection of strings

Notice, though, that in the standard model, the drag force experienced by a given particle — and hence the mass it acquires — is determined by experimental measurement and specified as an input to the theory. In the string theory version, the drag force — and hence the masses of the vibrational patterns — would be traced back to interactions between strings (since the Higgs ocean would be made of strings) and should be

Imagine a string that's constrained to vibrate only on the two-dimensional surface of a flat tabletop. The string will he able to execute a variety of vibrational patterns, but only those involving motion in the left/right and back/forth directions of the table's surface. If the string is then released to vibrate in the third dimension, motion in the up/down dimension that leaves the table's surface, additional vibrational patterns become accessible. Now, although it is hard to picture in more than three dimensions, this conclusion — more dimensions means more vibrational patterns — is general. If a string can vibrate in a fourth spatial dimension, it can execute more vibrational patterns than it could in only three; if a string can vibrate in a fifth spatial dimension, it can execute more vibrational patterns than it could in only four; and so on. This is an important realization, because there is an equation in string theory that demands that the number of independent vibrational patterns meet a very precise constraint. If the constraint is violated, the mathematics of string theory falls apart and its equations are rendered meaningless. In a universe with three space dimensions, the number of vibrational patterns is too small and the constraint is not met; with four space dimensions, the number of vibrational patterns is still too small; with five, six, seven, or eight dimensions it is still too small; but with nine space dimensions, the constraint on the number of vibrational patterns is satisfied perfectly. And that's how string theory determines the number of space dimensions.*

*19*While this illustrates well the interplay of geometry and physics, their association within string theory goes further and, in fact, provides a way to address a critical problem encountered earlier. Recall that, in trying to make detailed contact between string vibrational patterns and the known particle species, physicists ran into trouble. They found that there were far too many massless string vibrational patterns and, moreover, the detailed properties of the vibrational patterns did not match those of the known matter and force particles. But what I didn't mention earlier, because we hadn't yet discussed the idea of extra dimensions; is that although those calculations took account of the

*number*of extra dimensions (explaining, in part, why so many string vibrational patterns were found), they did not take account of the small size and complex*shape*of the extra dimensions — they assumed that all space dimensions were flat and fully unfurled — and that makes a substantial difference.Strings are so small that even when the extra six dimensions are crumpled up into a Calabi-Yau shape, the strings still vibrate into those directions. For two reasons, that's extremely important. First, it ensures that the strings always vibrate in all nine space dimensions, and hence the constraint on the number of vibrational patterns continues to be satisfied, even when the extra dimensions are tightly curled up. Second, just as the vibrational patterns of air streams blown through a tuba are affected by the twists and turns of the instrument, the vibrational patterns of strings are influenced by the twists and turns in the geometry of the extra six dimensions. If you were to change the shape of a tuba by making a passageway narrower or by making a chamber longer, the air's vibrational patterns and hence the sound of the instrument would change. Similarly, if the shape and size of the extra dimensions were modified, the precise properties of each possible vibrational pattern of a string would also be significantly affected. And since a string's vibrational pattern determines its mass and charge, this means that the extra dimensions play a pivotal role in deter mining particle properties.

This is a key realization.

*The precise size and shape of the extra dimensions has a profound impact on string vibrational patterns and hence on particle properties.*As the basic structure of the universe — from the formation of galaxies and stars to the existence of life as we know it — depend; sensitively on the particle properties,**the code of the cosmos may well be written in the geometry of a Calabi-Yau shape.**We saw one example of a Calabi-Yau shape in Figure 12.9, but there are at least hundreds of thousands of other possibilities. The question, then, is which Calabi-Yau shape, if any, constitutes the extra-dimensional part of the spacetime fabric.

**This is one of the most important questions string theory faces**since only with a definite choice of Calabi-Yau shape are the detailed features of string vibrational patterns determined.**To date, the question remains unanswered.**The reason is that the current understanding of string theory's equations provides no insight into how to pick one shape from the many; from the point of view of the known equations, each Calabi-Yau shape is as valid as any other. The equations don't even determine the size of the extra dimensions. Since we don't see the extra dimensions, they must be small, but precisely how small remains an open question.Is this a fatal flaw of string theory? Possibly. But I don't think so. As we will discuss more fully in the next chapter, the exact equations of string theory have eluded theorists for many years and so much work has used

*approximate*equations. These have afforded insight into a great many features of string theory, but for certain questions — including the exact size and shape of the extra dimensions — the approximate equations fall short. As we continue to sharpen our mathematical analysis and improve these approximate equations, determining the form of the extra dimensions is a prime — and in my opinion attainable — objective.**So far, this goal remains beyond reach.**Nevertheless, we can still ask whether

*any*choice of Calabi-Yau shape yields string vibrational patterns that closely approximate the known particles. And here the answer is quite gratifying.Although we are far from having investigated every possibility, examples of Calabi-Yau shapes have been found that give rise to string vibrational patterns in rough agreement with Tables 12.1 and 12.2. For instance, in the mid-1980s Philip Candelas, Gary Horowitz, Andrew Strominger, and Edward Witten (the team of physicists who realized the relevance of Calabi-Yau shapes for string theory) discovered that each hole — the term is used in a precisely defined mathematical sense — contained within a Calabi-Yau shape gives rise to a

*family*of lowest-energy string vibrational patterns. A Calabi-Yau shape with three holes would therefore provide an explanation for the repetitive structure of three families of elementary particles in Table 12.1. Indeed, a number of such three-holed Calabi-Yau shapes have been found. Moreover, among these preferred Calabi-Yau shapes are ones that also yield just the right number of messenger particles as well as just the right electric charges and nuclear force properties to match the particles in Tables 12.1 and 12.2.This is an extremely encouraging result; by no means was it ensured. In merging general relativity and quantum mechanics, string theory might have achieved one goal only to find it impossible to come anywhere near the equally important goal of explaining the properties of the known matter and force particles. Researchers take heart in the theory's having blazed past that disappointing possibility. Going further and calculating the precise masses of the particles is significantly more challenging. As we discussed, the particles in Tables 12.1 and 12.2 have masses that deviate from the lowest-energy string vibrations — zero times the Planck mass — by less than one part in a million billion. Calculating such infinitesimal deviations requires a level of precision way beyond what we can muster with our current understanding of string theory's equations.

As a matter of fact, I suspect, as do many other string theorists, that the tiny masses in Tables 12.1 and 12.2 arise in string theory much as they do in the standard model. Recall from Chapter 9 that in the standard model, a Higgs field takes on a nonzero value throughout all space, and the mass of a particle depends on how much drag force it experiences as it wades through the Higgs ocean. A similar scenario likely plays out in string theory. If a huge collection of strings

**all vibrate in just the right coordinated way throughout all of space,**they can provide a uniform background that for all intents and purposes would be indistinguishable from a Higgs ocean. String vibrations that initially yielded zero mass would then acquire tiny nonzero masses through the drag force they experience as they move and vibrate through the string theory version of the Higgs ocean.Notice, though, that in the standard model, the drag force experienced by a given particle — and hence the mass it acquires — is determined by experimental measurement and specified as an input to the theory. In the string theory version, the drag force — and hence the masses of the vibrational patterns — would be traced back to interactions between strings (since the Higgs ocean would be made of strings) and should be

*calculable.*String theory, at least in principle, allows all particle properties to be determined by the theory itself.**No one has accomplished this**, but as emphasized, string theory is still very much a work in progress. In time, researchers hope to realize fully the vast potential of this approach to unification. The motivation is strong because the potential payoff is big. With hard work and substantial luck, string theory may one day explain the fundamental particle properties and, in turn, explain why the universe is the way it is.*****Let me prepare you for one relevant development we will encounter in the next chapter. String theorists have known for decades that the equations they generally use to mathematically analyze string theory are approximate (the exact equations have proven difficult to identify and understand). However, most thought that the approximate equations were sufficiently accurate to determine the required number of extra dimensions. More recently (and to the shock of most physicists in the field), some string theorists showed that the approximate equations missed one dimension; it is now accepted that the theory needs seven extra dimensions. As we will see, this does not compromise the material discussed in this chapter, but shows that it fits within a larger, in fact more unified, framework.

*20*