THE FABRIC of the COSMOS, Brian Greene, 2004
```(annotated and with added bold highlights by Epsilon=One)
```(annotated and with added bold highlights by Epsilon=One)
Chapter 12 - The World on a String
The Fabric According to String Theory
Imagine a universe in which to understand anything you'd need to understand everything. A universe in which to say anything about why a planet orbits a star, about why a baseball flies along a particular trajectory, about how a magnet or a battery works, about how light and gravity operate — a universe in which to say anything about anything — you would need to uncover the most fundamental laws and determine how they act on the finest constituents of matter. Thankfully, this universe is not our universe.
If it were, it's hard to see brow science would have made any progress at all. Over the centuries, the reason we've been able to make headway is that we've been able to work piecemeal; we've been able to unravel mysteries step by step, with each new discovery going a bit deeper than the previous. Newton didn't need to know about atoms to make great strides in understanding motion and gravity. Maxwell didn't need to know about electrons and other charged particles to develop a powerful theory of electromagnetism. Einstein didn't need to address the primordial incarnation of space and time to formulate a theory of how they curve in the service of the gravitational force. Instead, each of these discoveries, as well as the many others that underlie our current conception of the cosmos, proceeded within a limited context that unabashedly left many basic questions unanswered. Each discovery was able to contribute its own piece to the puzzle, even though no one knew — and we still don't know — what grand synthesizing picture comprises all the puzzle's pieces.
A closely related observation is that although today's science differs sharply from that of even fifty years ago, it would be simplistic to summarize scientific progress in terms of new theories overthrowing their predecessors. A more correct description is that each new theory refines its predecessor by providing a more accurate and more wide-reaching framework. Newton's theory of gravity has been superseded by Einstein's general relativity, but it would be naïve to say that Newton's theory was wrong. In the domain of objects that don't move anywhere near as fast as light and don't produce gravitational fields anywhere near as strong as those of black holes, Newton's theory is fantastically accurate. Yet this is not to say that Einstein's theory is a minor variant on Newton's; in the course of improving Newton's approach to gravity, Einstein invoked a whole new conceptual schema, one that radically altered our understanding of space and time. But the power of Newton's discovery within the domain he intended it for (planetary motion, commonplace terrestrial motion, and so on) is unassailable.
We envision each new theory taking us closer to the elusive goal of truth, but whether there is an ultimate theory — a theory that cannot be refined furthx because it has finally revealed the workings of the universe at the deepest possible level — is question no one can answer. Even so, the pattern traced out during the last three hundred years of discovery gives tantalizing evidence that such a theory can be developed. Broadly speaking, each new breakthrough has gathered a wider range of physical phenomena under fewer theoretical umbrellas. Newton's discoveries showed that the forces governing planetary motion are the same as those governing the motion of falling objects here on earth. Maxwell's discoveries showed that electricity and magnetism are two sides of the same coin. Einstein's discoveries showed that space and time are as inseparable as Midas' touch and gold. The discoveries of a generation of physicists in the early twentieth century established that myriad mysteries of microphysics could be explained with precision using quantum mechanics. More recently, the discoveries of Glashow, Salam, and Weinberg showed that electromagnetism and the weak nuclear force are two manifestations of a single force — the electroweak force — and there is even tentative, circumstantial evidence that the strong nuclear force may join the electroweak force in a yet grander synthesis. 1 Taking all this together, we see a pattern that goes from complexity to simplicity, a pattern that goes from diversity to unity. The explanatory arrows seem to be converging on a powerful, yet-to-be discovered framework that would unify all of nature's forces and all of matter within a single theory capable of describing all physical phenomena.
Albert Einstein, who for more than three decades sought to combine electromagnetism and general relativity in a single theory, is rightly credited with initiating the modern search for a unified theory. For long stretches during those decades, he was the sole searcher for such a unified theory, and his passionate yet solitary quest alienated him from the mainstream physics community. During the last twenty years, though, there has been a resurgence in the quest for a unified theory. Einstein's lonely dream has become the driving force for a whole generation of physicists. But with the discoveries since Einstein time has come a shift in focus. Even though we don't yet have a successful theory combining the strong nuclear force and the electroweak force, all three of these forces (electromagnetic, weak, strong) have been described by a single uniform language based on quantum mechanics. But general reralivity, our most refined theory of the fourth force, stands outside this framework. General relativity is a classical theory: it does not incorporate any of the probabilistic concepts of quantum theory. A primary goal of the modern unification program is therefore to combine general relativity and quantum mechanics, and to describe all four forces within the same quantum mechanical framework. This has proven to be one of the most difficult problems theoretical physics has ever encountered.
Let's see why.
If it were, it's hard to see brow science would have made any progress at all. Over the centuries, the reason we've been able to make headway is that we've been able to work piecemeal; we've been able to unravel mysteries step by step, with each new discovery going a bit deeper than the previous. Newton didn't need to know about atoms to make great strides in understanding motion and gravity. Maxwell didn't need to know about electrons and other charged particles to develop a powerful theory of electromagnetism. Einstein didn't need to address the primordial incarnation of space and time to formulate a theory of how they curve in the service of the gravitational force. Instead, each of these discoveries, as well as the many others that underlie our current conception of the cosmos, proceeded within a limited context that unabashedly left many basic questions unanswered. Each discovery was able to contribute its own piece to the puzzle, even though no one knew — and we still don't know — what grand synthesizing picture comprises all the puzzle's pieces.
A closely related observation is that although today's science differs sharply from that of even fifty years ago, it would be simplistic to summarize scientific progress in terms of new theories overthrowing their predecessors. A more correct description is that each new theory refines its predecessor by providing a more accurate and more wide-reaching framework. Newton's theory of gravity has been superseded by Einstein's general relativity, but it would be naïve to say that Newton's theory was wrong. In the domain of objects that don't move anywhere near as fast as light and don't produce gravitational fields anywhere near as strong as those of black holes, Newton's theory is fantastically accurate. Yet this is not to say that Einstein's theory is a minor variant on Newton's; in the course of improving Newton's approach to gravity, Einstein invoked a whole new conceptual schema, one that radically altered our understanding of space and time. But the power of Newton's discovery within the domain he intended it for (planetary motion, commonplace terrestrial motion, and so on) is unassailable.
We envision each new theory taking us closer to the elusive goal of truth, but whether there is an ultimate theory — a theory that cannot be refined furthx because it has finally revealed the workings of the universe at the deepest possible level — is question no one can answer. Even so, the pattern traced out during the last three hundred years of discovery gives tantalizing evidence that such a theory can be developed. Broadly speaking, each new breakthrough has gathered a wider range of physical phenomena under fewer theoretical umbrellas. Newton's discoveries showed that the forces governing planetary motion are the same as those governing the motion of falling objects here on earth. Maxwell's discoveries showed that electricity and magnetism are two sides of the same coin. Einstein's discoveries showed that space and time are as inseparable as Midas' touch and gold. The discoveries of a generation of physicists in the early twentieth century established that myriad mysteries of microphysics could be explained with precision using quantum mechanics. More recently, the discoveries of Glashow, Salam, and Weinberg showed that electromagnetism and the weak nuclear force are two manifestations of a single force — the electroweak force — and there is even tentative, circumstantial evidence that the strong nuclear force may join the electroweak force in a yet grander synthesis. 1 Taking all this together, we see a pattern that goes from complexity to simplicity, a pattern that goes from diversity to unity. The explanatory arrows seem to be converging on a powerful, yet-to-be discovered framework that would unify all of nature's forces and all of matter within a single theory capable of describing all physical phenomena.
Albert Einstein, who for more than three decades sought to combine electromagnetism and general relativity in a single theory, is rightly credited with initiating the modern search for a unified theory. For long stretches during those decades, he was the sole searcher for such a unified theory, and his passionate yet solitary quest alienated him from the mainstream physics community. During the last twenty years, though, there has been a resurgence in the quest for a unified theory. Einstein's lonely dream has become the driving force for a whole generation of physicists. But with the discoveries since Einstein time has come a shift in focus. Even though we don't yet have a successful theory combining the strong nuclear force and the electroweak force, all three of these forces (electromagnetic, weak, strong) have been described by a single uniform language based on quantum mechanics. But general reralivity, our most refined theory of the fourth force, stands outside this framework. General relativity is a classical theory: it does not incorporate any of the probabilistic concepts of quantum theory. A primary goal of the modern unification program is therefore to combine general relativity and quantum mechanics, and to describe all four forces within the same quantum mechanical framework. This has proven to be one of the most difficult problems theoretical physics has ever encountered.
Let's see why.