**Table of Contents**

*.......The Elegant Universe*

**THE ELEGANT UNIVERSE,****Brian Greene,**1999, 2003

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 14 - Reflections on Cosmology**

Why Three?

An immediate question is, What drives the symmetry reduction that singles out precisely three spatial dimensions for expansion? That is, beyond the experimental fact that only three of the space dimensions have expanded to observably large size, does string theory provide a fundamental reason for why some other number (four, five, six, and so on) or, even more symmetrically, all of the space dimensions don't expand as well? Brandenberger and Vafa came up with a possible explanation. Remember that the small-radius/large-radius duality of string theory rests upon the fact that when a dimension is curled up like a circle, a string can wrap around it. Brandenberger and Vafa realized that, like rubber bands wrapped around a bicycle tire inner tube, such wrapped strings tend to constrict the dimensions they encircle, keeping them from expanding. At first sight, this would seem to mean that each of the dimensions will be constricted, since the strings can and do wrap them all. The loophole is that if a wrapped string and its antistring partner (roughly, a string that wraps the dimension in the opposite direction) should come into contact, they will swiftly annihilate one other, producing an

Imagine two point particles rolling along a one-dimensional line such as the spatial extent of Lineland. Unless they happen to have identical velocities, sooner or later one will overtake the other, and they will collide. Notice, however, that if these same point particles are randomly rolling around on a two-dimensional plane such as the spatial extent of Flatland, it is likely that they will never collide. The second spatial dimension opens up a new world of trajectories for each particle, most of which do not cross each other at the same point at the same time. In three, four, or any higher number of dimensions, it gets increasingly unlikely that the two particles will ever meet. Brandenberger and Vafa realized that an analogous idea holds if we replace point particles with loops of string, wrapped around spatial dimensions. Although it's significantly harder to see, if there are

This leads to the following picture. In the first moment of the universe, the tumult from the high, but finite, temperature drives all of the circular dimensions to try to expand. As they do, the wrapped strings constrict the expansion, driving the dimensions back to their original Planck-size radii. But, sooner or later a random thermal fluctuation will drive three dimensions momentarily to grow larger than the others, and our discussion then shows that strings which wrap these dimensions are highly likely to collide. About half of the collisions will involve string/antistring pairs, leading to annihilations that continually lessen the constriction, allowing these three dimensions to continue to expand. The more they expand, the less likely it is for other strings to get entangled around them since it takes more energy for a string to wrap around a larger dimension. Thus, the expansion feeds on itself, becoming ever less constricted as the dimensions get ever larger. We can now imagine that these three spatial dimensions continue to evolve in the manner described in the previous sections, and expand to a size as large as or larger than the currently observable universe.

*unwrapped*string. If these processes happen with sufficient rapidity and efficiency, enough of the rubber band—like constriction will be eliminated, allowing the dimensions to expand. Brandenberger and Vafa suggested that this reduction in the choking effect of wrapped strings will happen in only three of the spatial dimensions. Here's why.Imagine two point particles rolling along a one-dimensional line such as the spatial extent of Lineland. Unless they happen to have identical velocities, sooner or later one will overtake the other, and they will collide. Notice, however, that if these same point particles are randomly rolling around on a two-dimensional plane such as the spatial extent of Flatland, it is likely that they will never collide. The second spatial dimension opens up a new world of trajectories for each particle, most of which do not cross each other at the same point at the same time. In three, four, or any higher number of dimensions, it gets increasingly unlikely that the two particles will ever meet. Brandenberger and Vafa realized that an analogous idea holds if we replace point particles with loops of string, wrapped around spatial dimensions. Although it's significantly harder to see, if there are

*three*(or fewer) circular spatial dimensions, two wrapped strings will likely collide with one another—the analog of what happens for two particles moving in one dimension. But in four or more space dimensions, wrapped strings are less and less likely ever to collide—the analog of what happens for point particles in two or more dimensions.*4*This leads to the following picture. In the first moment of the universe, the tumult from the high, but finite, temperature drives all of the circular dimensions to try to expand. As they do, the wrapped strings constrict the expansion, driving the dimensions back to their original Planck-size radii. But, sooner or later a random thermal fluctuation will drive three dimensions momentarily to grow larger than the others, and our discussion then shows that strings which wrap these dimensions are highly likely to collide. About half of the collisions will involve string/antistring pairs, leading to annihilations that continually lessen the constriction, allowing these three dimensions to continue to expand. The more they expand, the less likely it is for other strings to get entangled around them since it takes more energy for a string to wrap around a larger dimension. Thus, the expansion feeds on itself, becoming ever less constricted as the dimensions get ever larger. We can now imagine that these three spatial dimensions continue to evolve in the manner described in the previous sections, and expand to a size as large as or larger than the currently observable universe.

**(Epsilon=One: The three above paragraphs illustrate that Brandenberger, Vafa, and Greene certainly have a wild imagination for ludicrous contrivances. Such is what happens when one depends upon erroneous equations, the irreconcilable Standard Model assumptions, and the hubris of academic inbreeding.)**