**Table of Contents**

*.......The Elegant Universe*

**THE ELEGANT UNIVERSE,****Brian Greene,**1999, 2003

```(annotated and with added

**bold highlights by Epsilon=One**)

**Chapter 13 - Black Holes: A String/M-Theory Perspective**

Black Hole Entropy

For many years, some of the most accomplished theoretical physicists speculated about the possibility of space-tearing processes and of a connection between black holes and elementary particles. Although such speculations might have sounded like science fiction at first,

Of course, a description of rearranging books, articles, and newspapers on a desktop—and deciding which rearrangements "leave its overall appearance intact"—lacks scientific precision. The rigorous definition of entropy actually involves counting or calculating the number of possible rearrangements of the microscopic quantum-mechanical properties of the elementary constituents of a physical system that do not affect its gross macroscopic properties (such as its energy or pressure). The details are not essential so long as you realize that

In 1970, Jacob Bekenstein, then a graduate student of John Wheeler's at Princeton, made an audacious suggestion. He put forward the remarkable idea that black holes might have entropy—and a huge amount of it. Bekenstein was motivated by the venerable and well-tested

But what happens, Bekenstein in effect asked, if you clean your desk near the event horizon of a black hole and you set up a vacuum pump to suck all of the newly agitated air molecules from the room into the hidden depths of the black hole's interior? We can be even more extreme: What if the vacuum pumps all the air, and all the contents on the desk, and even the desk itself into the black hole, leaving you in a cold, airless, thoroughly ordered room? Since the entropy in your room has certainly decreased, Bekenstein reasoned that the only way to satisfy the second law of thermodynamics would be for the black hole to have entropy, and for this entropy to sufficiently increase as matter is pumped into it to offset the observed entropic decrease outside the black hole's exterior.

In fact, Bekenstein was able to draw on a famous result of Stephen Hawking's to strengthen his case. Hawking had shown that the area of the event horizon of a black hole—recall, this is the surface of no return that enshrouds every black hole—always increases in any physical interaction. Hawking demonstrated that if an asteroid falls into a black hole, or if some of the surface gas of a nearby star accretes onto the black hole, or if two black holes collide and combine—in any of these processes and all others as well, the total area of the event horizon of a black hole always increases. To

On closer inspection, though, there are two reasons why

**the discovery of string theory, with its ability to merge general relativity and quantum mechanics, has allowed us now to plant these possibilities firmly at the forefront of cutting-edge science.**This success emboldens us to ask whether any of the other mysterious properties of our universe that have stubbornly resisted resolution for decades might also succumb to the powers of string theory. Foremost among these is the notion of*black hole entropy.*This is the arena in which string theory has most impressively flexed its muscles, successfully solving a quarter-century-old problem of profound significance.**Entropy is a measure of disorder or randomness.**For instance, if your desk is cluttered high with layer upon layer of open books, half-read articles, old newspapers, and junk mail, it is in a state of high disorder, or high*entropy.*On the other hand, if it is fully organized with articles in alphabetized folders, newspapers neatly stacked in chronological order, books arranged in alphabetical order by author, and pens placed in their designated holders, your desk is in state of high order or, equivalently,*low entropy.*This example illustrates the essential idea, but physicists have given a fully quantitative definition to entropy that allows one to describe something's entropy by using a definite numerical value: Larger numbers mean greater entropy, smaller numbers mean less entropy. Although the details are a little complicated, this number, roughly speaking, counts the possible rearrangements of the ingredients in a given physical system that leave its overall appearance intact. When your desk is neat and clean, almost any rearrangement—changing the order of the newspapers, books, or articles, moving the pens from their holders—will disturb its highly ordered organization. This accounts for its having low entropy. On the contrary, when your desk is a mess,.numerous rearrangements of the newspapers, articles, and junk mail will leave it a mess and therefore will not disturb its overall appearance. This accounts for its having high entropy.Of course, a description of rearranging books, articles, and newspapers on a desktop—and deciding which rearrangements "leave its overall appearance intact"—lacks scientific precision. The rigorous definition of entropy actually involves counting or calculating the number of possible rearrangements of the microscopic quantum-mechanical properties of the elementary constituents of a physical system that do not affect its gross macroscopic properties (such as its energy or pressure). The details are not essential so long as you realize that

**entropy is a fully quantitative quantum-mechanical concept that precisely measures the overall disorder of a physical system.**In 1970, Jacob Bekenstein, then a graduate student of John Wheeler's at Princeton, made an audacious suggestion. He put forward the remarkable idea that black holes might have entropy—and a huge amount of it. Bekenstein was motivated by the venerable and well-tested

*second law of thermodynamics,*which declares that the entropy of a system always increases: Everything tends toward greater disorder. Even if you clean your cluttered desk, decreasing its entropy, the total entropy, including that of your body and the air in the room, actually increases. You see, to clean your desk you have to expend energy; you have to disrupt some of the orderly molecules of fat in your body to create this energy for your muscles, and as you clean, your body gives off heat, which jostles the surrounding air molecules into a higher state of agitation and disorder. When all of these effects are accounted for, they more than compensate for your desk's decrease in entropy, and thus the total entropy increases.But what happens, Bekenstein in effect asked, if you clean your desk near the event horizon of a black hole and you set up a vacuum pump to suck all of the newly agitated air molecules from the room into the hidden depths of the black hole's interior? We can be even more extreme: What if the vacuum pumps all the air, and all the contents on the desk, and even the desk itself into the black hole, leaving you in a cold, airless, thoroughly ordered room? Since the entropy in your room has certainly decreased, Bekenstein reasoned that the only way to satisfy the second law of thermodynamics would be for the black hole to have entropy, and for this entropy to sufficiently increase as matter is pumped into it to offset the observed entropic decrease outside the black hole's exterior.

In fact, Bekenstein was able to draw on a famous result of Stephen Hawking's to strengthen his case. Hawking had shown that the area of the event horizon of a black hole—recall, this is the surface of no return that enshrouds every black hole—always increases in any physical interaction. Hawking demonstrated that if an asteroid falls into a black hole, or if some of the surface gas of a nearby star accretes onto the black hole, or if two black holes collide and combine—in any of these processes and all others as well, the total area of the event horizon of a black hole always increases. To

**Bekenstein**, the inexorable evolution to greater total area suggested a link with the inexorable evolution to greater total entropy embodied in the second law of thermodynamics. He**proposed that the area of the event horizon of a black hole provides a precise measure of its entropy.**On closer inspection, though, there are two reasons why

**most physicists thought that Bekenstein's idea could not be right.**First, black holes would seem to be among the most ordered and organized objects in the whole universe. Once one measures the black hole's mass, the force charges it carries, and its spin, its identity has been nailed down precisely. With so few defining features, a black hole appears to lack sufficient structure to allow for disorder. Just as there is little havoc one can wreak on a desktop that holds solely a book and a pencil, black holes seem too simple to support disorder. The second reason that Bekenstein's proposal was hard to swallow is that entropy, as we have discussed it here, is a quantum-mechanical concept, whereas**black holes, until recently, were firmly entrenched in the antagonistic camp of classical general relativity.**In the early 1970s, without a way to merge general relativity and quantum mechanics, it seemed awkward, at best, to discuss the possible entropy of a black hole.